If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+12x=72
We move all terms to the left:
6x^2+12x-(72)=0
a = 6; b = 12; c = -72;
Δ = b2-4ac
Δ = 122-4·6·(-72)
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{13}}{2*6}=\frac{-12-12\sqrt{13}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{13}}{2*6}=\frac{-12+12\sqrt{13}}{12} $
| x+60/5=59 | | 50*(0.5-x/2)=0 | | x+40/2=41 | | 7x-1+10=11x-1-14 | | (2x-17)+(85)=180 | | y^2-0.5y-0.2=0 | | 3x-7+2=2x+5x+1 | | j+452/5=16 | | j+452 =16 | | (104x-10)=180 | | 5/2x+10=60 | | 93=b+19 | | x²=34x+289 | | 55=2c | | 1/3(6x+9)=1/4(12x+8) | | -2/3v-1/2=1/7 | | 4(x+3)-2(x+2)-6=3(x+10) | | 2x(x-1)(2x+3)=0 | | 5x+2=3x+(−2) | | 3k/25=900/25 | | 7+(6x52+3)= | | (5i)(i)(-2i)=0 | | 25/x=2x | | 150*0.008=a | | -1/2u-5/3=-4/5 | | –3(–1+d)= | | x$-3x^2-54=0 | | –7(–9+4c)= | | 5/x=25/64 | | 14.4+u/7=-3.1 | | Xx1.5=30 | | Xx1.5=39 |